

The role of transdisciplinary collaboration in thermal science to meet societal challenges

Peter Stephan Technische Universitat Darmstadt

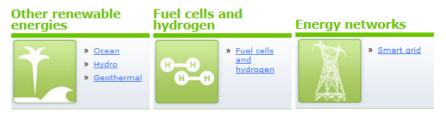
Societal Challenges

and R&D funding from a European perspective

HORIZON 2020 The EU Framework Programme for Research and Innovation

- The programme focuses on 7 societal challenges:
 - Health, demographic change and wellbeing;
 - Food security, sustainable agriculture and forestry, marine and maritime and inland water research, and the Bioeconomy;
 - Secure, clean and efficient energy;
 - Smart, green and integrated transport. \checkmark
 - Climate action, environment, resource efficiency and raw materials;
 - Europe in a changing world inclusive, innovative and reflective societies;
 - Secure societies protecting freedom and security of Europe and its 3 out of 7 societal challenges address Thermal Sciences! citizens.

Societal Challenges


and R&D funding from a European perspective

RESEARCH & INNOVATION Energy

9 energy relevant research topics were defined:

Funding strategy EU: "A challenge-based approach will bring together resources and knowledge across different fields, technologies and disciplines, including social sciences and the humanities."

Clean coal/CCS **Energy efficiency** » <u>Clean</u> » Efficiency and coal/CCS savings » Coal and steel (RFCS)

Horizontal aspe

EU funded: top-down approach with transdisciplinary collaboration » Soci ecor

emeraina & materials

rese

Societal Challenges

... and the German "Energiewende" and the DFG

Die Bundesregierung

- Energy transition goals defined by Government & Ministries:
 - ✓ greenhouse gas reductions: 80–95% reduction by 2050 compared to 1990
 - renewable energy targets: 55-60% share by 2035 (hydro, solar and wind power)
 - ✓ energy efficiency: electricity efficiency up by 50% by 2050

Ministry funded vs. DFG funded = Top-down vs. bottom-up approach

The German Science Foundation DFG still follows bottom-up approaches without defining any priority topics. However, transdisciplinary research proposals are specifically welcome and more and more pushed.

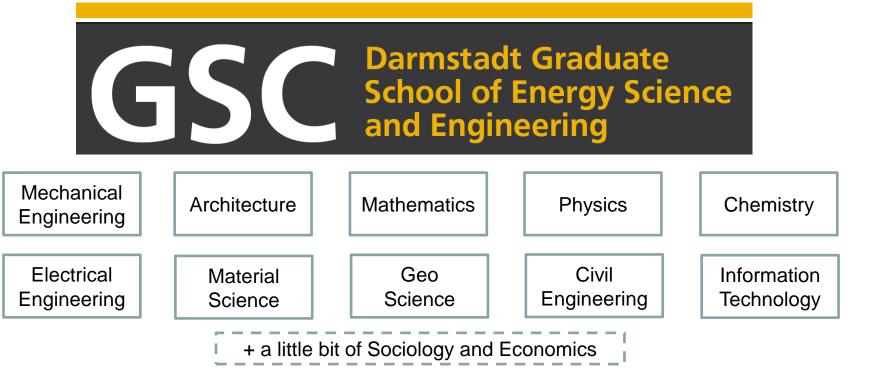
... and my personal experience with it

1: Research Cluster at TU Darmstadt

- founded 2007 and financed until 2014 by German Science Foundation (> 100 scientists from different disciplines, ~ 6.5 Mio. € p.a.)
- adopted by the University as a multi- or transdisciplinary center from 2015 bridging 5 faculties (financial support for some overhead only)

	с 7		nter of nart In and Combust		
Mechanical Engineering		Mathematics	Physics	Chemistry	

Material


Science

... and my personal experience with it

2: Graduate School at TU Darmstadt

- founded 2012 and financed until 2017+x by German Science Foundation (~ 35 PhD students, ~ 2 Mio. € p.a.).
- transdisciplinary M.Sc. / PhD programme to "educate tomorrow's leading Energy Engineers" involving 10 faculties

... and my personal experience with it

Very positive experiences

- I understood and learned a lot about other research methods, trends, and possibilities.
- I started understanding the sometimes quite different thinking and culture of scientists from different disciplines.
- We clearly work towards broader solutions or the most energy-efficient system solution instead towards an optimum solution of a small subsystem disregarding the overall system.

My conclusion here could be: "Transdisciplinary research is mandatory to solve the upcoming energy problems and it makes my life as a researcher much richer."

... and my personal experience with it

Very negative experiences

- Transdisciplinary projects sometimes do not show the usual scientific depth from each disciplinary perspective.
- Misunderstanding between colleagues occurs more often.
- The evaluation process of transdisciplinary proposals often is extremely difficult:
 - peers from multiple disciplines are necessary
 - different disciplines have different performance indicators (specific journals, hindex, patents, attracted third-party money, ...)
 - each discipline has his specific arrogance (physicist about engineer: "he is not a real scientist"; engineer about physicist: "he doesn't solve real life problems")

My conclusion here could be:

"I should stop pushing myself for transdisciplinary research and proposal writing and concentrate on my narrow expertise. The success ratio is much higher there and my life would be easier."

... and can we do something to promote it?

"The Dilemma"

- Transdisciplinary collabortion is definitely needed to solve societal challenges
- It looks straight forward and easy on paper, but it can be hard and sometimes frustrating in real life

Ideas how to promote transdisciplinary collabortion

- Should we organize transdisciplinary sessions on conferences such as IHTC with e.g. one topic addressed from very different disciplines ?
- Should we start more bottom-up transdisciplinary projects ourselves instead of waiting for top-down calls which we cannot influence ?
- Can we make performance indicators of different disciplines more transparent and accepted ?
- ... let's start a discussion!